

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR-TR- 79-1044	. 3. RECIPIENT'S CATALOG NUMBER
). TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
MICROPROCESSOR REQUIREMENTS FOR IMPLEMENTING	Interim
MODERN CONTROL LOGIC	6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
F.A. Farrar and James R. Krodel	F49620-78-C-0017
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
United Technologies Research Center Controls & Operations Analysis Group East Hartford, CT 06108	61102F 2304/A1
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research/NM Bolling AFB, Washington, DC 20332	September 14, 1979
borring ar b, mashrington, be 20002	24
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
Approved for public release; distribution unlimit	DDC
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	OCT 15 1979
8. SUPPLEMENTARY NOTES	
8. SUPPLEMENTARY NOTES	
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number	

AFOSR-TR- 79-1044 UNITED TECHNOLOGIES RESEARCH CENTER

East Hartford, Connecticut 06108

Report No.: R79-944590-1

Date: September 14, 1979

Prepared by: Florence A. Farrar

James R. Krodel

Director
Mathematical and Information Sciences
Air Force Office of Scientific Research
United States Air Force
Building 410
Bolling Air Force Base
Washington, D.C. 20332

Attention: Major Charles L. Nefzger

AFOSR/NM

Subject: Microprocessor Requirements for Implementing Modern

Control Logic, Contract F49620-79-C-0078, Technical Progress Report No. 1 for the period March 1, 1979

through August 31, 1979.

Reference: Farrar, F. A. and R. S. Eidens: Microprocessor

Requirements for Implementing Modern Control Logic. United Technologies Research Center Report R79-944258-2, Final Technical Report prepared under Air Force Office

of Scientific Research Contract F49620-78-C-0017,

March 1979.

Gentlemen:

la. The objective of this research investigation is to develop and evaluate analytical procedures for establishing microprocessor requirements for implementing modern control logic. Key issues in microprocessor implementation of modern control logic include (1) accuracy, (2) computational capability, and (3) memory requirements. These requirements must be established for the interface as well as for the microprocessor control code.

1b. A Phase I first-year study directed toward establishing microprocessor requirements for control of linear systems was performed at United Technologies Research Center (UTRC) from 1 February 1978 to 31 January 1979 under Contract F49620-78-C-0017 with the Air Force Office

of Scientific Research (AFOSR). This Phase I program resulted in successful development of analytical procedures for establishing microprocessor requirements for multivariable feedback control of linear stochastic dynamic systems. The developed procedures were evaluated and illustrated by application to (1) a second-order system and (2) a linearized fifth-order F100 turbofan engine model. These results are documented in the referenced report. Based on these results, the subject contract was awarded to UTRC for a Phase II second-year program. This second-year study is directed toward (1) validating Phase I results by demonstrating microprocessor implementation of linear quadratic Gaussian (LQG) logic for control of linear systems and (2) extending the analysis of microprocessor requirements for control of nonlinear systems.

- During this report period the UTRC effort has been directed toward validating Phase I results by demonstrating LQG control on an Intel 8080 microprocessor for a second-order continuous system. The second-order system is the same system used in the Phase I study. Accuracy, computational capability, and memory requirements of the microprocessor demonstration system will be compared with requirements predicted using the analytical procedures developed in the Phase I study. In addition, a paper presenting the Phase I study results was submitted and accepted for publication in the IEEE Transactions on Automatic Control and for presentation at the 18th IEEE Conference on Decision and Control (CDC). Approval to submit the paper was obtained from Major Charles L. Nefzger, the AFOSR contract monitor. A copy of the cover letter and paper submitted for publication in the Transactions is enclosed for Major Nefzger with this report.
- 3a. To demonstrate LQG control on an Intel 8080 microprocessor for the second-order continuous system (analog model), the system shown in Fig. 1 is being employed. The system consists of the analog model, an Intel 8080 microprocessor, A/D and D/A converters, and a strip chart recorder. The continuous system dynamics (analog model) are represented by

$$\dot{y} + 4\dot{y} + 2y = u_p; \ y(0) = 0.5$$

 $\dot{y}(0) = 0.5$
 $z_p = y + n_p$ (1)

where y, u_p , z_p , and η_p represent the system output, input, measurement, and measurement noise, respectively. The dot notation denotes differentiation with respect to time. The absolute maximum values are given by

$$|y| = 1.0$$

 $|\dot{y}| = 1.0$
 $|\ddot{y}| = 4.0$
 $|u|_{max} = 2.0$ (2)

The analog system shown in Fig. 1 is scaled so that 10 volts corresponds to the maximum value.

3b. For LQG control design, continuous system dynamics are represented in state-space notation. For digital control implementation, system dynamics are normalized so that the numbers in the control computations range between -1.0 and +1.0. Normalized continuous system dynamics are described by

$$\dot{x} = Ax + Bu + \xi$$

$$y = Cx + Du$$

$$z = Ex + Du$$
(3)

where the vectors x(nxl), u(mxl), y(pxl) and z(lxl) represent the normalized system states, inputs, outputs, and measurements, respectively. The random process vectors & and n represent white zero-mean Gaussian n-dimensional process and l-dimensional measurement noise, respectively. The second-order system matrices (A, B, C, D, and E) are shown in Table I. The companion form is shown for ease in relating the state equations (Eq. (3)) to the system input-output equation (Eq. (1)). (In the referenced report, the system matrices were displayed in standard form.)

3c. Normalized discrete control dynamics implemented on the micro-processor are given by

$$\hat{\omega}(k+1) = \phi_D \hat{\omega}(k) + H_D z(k+1)$$

$$u(k+1) = G_D \hat{\omega}(k+1)$$
(4)

where

$$\hat{W} = T^{-1}\hat{X}$$

$$\phi_{D} = (I - T^{-1}HE T\Delta t) (I + \phi)$$

$$\phi = T^{-1}FT\Delta t + \frac{(T^{-1}FT)^{2}\Delta t^{2}}{2!} + \frac{(T^{-1}FT)^{3}\Delta t^{3}}{3!} + \cdots$$

$$H_{D} = T^{-1}H\Delta t$$

$$G_{D} = GT$$
(5)

The vector $\hat{\mathbf{w}}$ represents estimated transformed state variables. The matrices G and H denote the deterministic control gains and filter gains, respectively. The gain matrices for the second-order system are shown in Table I. The transformation matrix T is an identity matrix.

- 4a. The software to implement Eq. (4) on a microprocessor consists of three matrix/vector multiplications ($\phi_D \hat{W}$, $H_D Z$, and $G_D \hat{W}$) and one vector addition (($\phi_D \hat{W}$) + ($H_D Z$)). In addition, software for the LQG control system includes a routine to save past state estimates and an interrupt service routine. The interrupt service routine (1) performs a timing check to assure that all control computations are completed within the sample time and (2) reads in measurement data and updates the system inputs.
- 4b. The overall block diagram of the control software described above is shown in Fig. 2. The block diagram of the matrix/vector multiplication code is displayed in Fig. 3. Figure 3 indicates that several minor changes (e.g., the order in which pointers are initialized and updated) were made in the matrix/vector multiplication block diagram presented in the referenced report. These changes result in more efficient microprocessor implementation. Note that the matrix/vector multiplication algorithm is not changed but rather the way the algorithm is implemented has been slightly modified. Block diagrams of the vector addition code, the store state estimates, and the interrupt service routine are shown in Fig. 4.
- 4c. Computation times as a function of computer cycles to execute the blocks of code shown in Figs. 3 and 4 are displayed in Table 2. The cycle time to execute a block of code varies with the microprocessor used. Note also that the computation time is defined in number of cycles. Once the number of cycles for the code on a given microprocessor has been defined conversion to seconds for different clock frequencies is easily done (t(sec) = t(cycles/clock frequency (hertz)).
- Sa. To compute the cycles for a given microprocessor, code must be written to execute the functions shown in the block diagrms of Figs. 3 and 4. Control code for the Intel 8080 microprocessor is shown in Fig. 5. The code consists of software to execute the control equations (Eq. (4)) and interface software. A software multiplication subroutine is used. Improvements were made in the preliminary matrix/vector multiplication code presented in the referenced report. These improvements result in reduced execution time. The code changes include (1) more efficient use of the registers in the multiplication algorithm (11.5% reduction in cycle time) and (2) more efficient memory (data array) accessing as well as more efficient use of the registers in the matrix/vector multiplication algorithm (reduction in cycle time dependent on system order, e.g., a 24% reduction in the matrix/vector multiplication control algorithm is obtained for a 2 x 2 matrix times a 2 x 1 vector). In addition, the interface software was added to the preliminary code. The code is also completely documented. The flow chart for the code is shown in Fig. 2.

- 5b. Table III shows times associated with executing the blocks of code in Figs. 3 and 4. Using the Phase I procedure to determine the computation time for the second-order system (Tables II and III) indicates that 6252 cycles are required for one pass through the code. For a 2 MHz clock (on-board ROM memory) the predicted computation time is equal to 3.13 ms; for a 1.47 MHz clock (off-board RAM memory) the predicted computation time is 4.25 ms. For convenience off-board RAM memory will be employed in this study.
- 6. Intel 8080 memory requirements as a function of system state, input and output orders are shown in Table IV. These requirements include the LQG control logic code as well as the interface logic code (interrupt service routine). Phase I procedures indicate that the total memory required for the second-order system is 490 bytes (15 bytes of RAM and 475 bytes of ROM).
- 7. Phase I study results indicate that the Intel 8080 with software multiply can be used to implement the LQG control law for the second-order system. The requirements for the second-order controller using the standard form are analytically computed to be (1) an 8-bit word length accuracy, (2) a minimum sample time (based on computations) of 4.25 ms and a maximum sample time (based on controller poles) of 700 ms, and (3) 490 words of memory (475 words of PROM and 15 words of RAM). These requirements include interface as well as microprocessor requirements.
- 8. The system shown in Fig. 1 has been constructed. The code has been implemented on the Intel 8080 microprocessor. The memory used agrees with the analytically predicted requirements. The actual computation time/sampling interval has been computed using an oscilloscope. The minimum sample time (based on actual code) was 4.70 ms. This actual computation time is approximately 10% higher than the analytically predicted code. This difference is within the ± 20% variation that is expected. Figure 6 compares the actual system response with the Phase-I predicted response. Figure 6 shows that, as predicted in the Phase I study, 8-bit accuracy is sufficient for implementing the second-order controller.
- 9. In the next report period the second-order and fifth-order controller analysis will be completed. Procedures for determining microprocessor requirements will be extended to nonlinear systems. In addition, results obtained in the Phase I study will be prepared for presentation at the 18th IEEE CDC.

The Principal Investigator, Mrs. Florence Farrar, is starting full-time studies for her Ph.D. at the University of Connecticut (UCONN) in September. Dr. Robert Guile, who received his Ph.D. from UCONN in 1970, has assumed the responsibilities of Principal Investigator effective September 20, 1979. Dr. Guile has most recently been engaged in research in the area of peakseeking adaptive systems. He has previously been involved with analysis and design of digital electronic control systems. He has 10 years of engineering experience, including 3 years at UTRC. Mr. James Krodel is continuing as Co-investigator.

Very truly yours,

UNITED TECHNOLOGIES CORPORATION Research Center

David P. Miller Assistant Manager, Engineering Operations

DPM/dip Enclosure

TABLE I
SECOND-ORDER MODEL DYNAMICS

Matrix	Matrix Elements		
A	0.0	1.0	
	-2.0	-4.0	
В	0.0		
	2.0		
С	1.0	0.0	
D	0		
E	1,0	0.0	
G	-0.871	-0.207	
н	1,130		
	-0.360		

TABLE II
COMPUTATION TIME

	Matrix/Vector Multiplications	n ² + n ² + nm
Function	Matrix/Vector Addition	$n(n-1) + n(\ell-1) + m(n-1)$
	Vector Additions	n
	Matrix/Vector Multiplication	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Time* (Cycles)	Vector Addition State Store	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Interrupt Service	$\overline{TC} + (\overline{AD}) \ell + (\overline{DA}) m$

^{*} See Figs. 3 and 4 for definitions of time notation (e.g., A defined on Fig. 3).

TABLE III

Intel 8080 Execution Times

Figure	Function	Cycle Time
	Я	433
	L _{mo}	54
	r _{m1}	103
	r_{m2}	55
3	X	17
	Lal	15
	L _{a2}	71
	L _{a3}	79
	v _{a0}	60
	Val	122
	V _{a2}	56
	0 _{d0}	72
4	D _{d1}	47
	v _{d2}	56
	TC	128
	AD	174
	DA	34

TABLE IV
MEMORY REQUIREMENTS

V	ariable	Memory Type	Memory (BYTES)		
Past state esti	t state estimate $(\hat{\kappa}(k))$		n		
Current state e	estimate (w(k+1))	RAM	n		
Measurement (z(k+1))		RAM	1		
Control (u(k+1))		RAM	m		
System matrix (ϕ_D)		PROM	n ²		
Kalman gain matrix (H _D)		PROM	n t		
Control gain matrix (GD)		PROM	mn		
Temporary Storage		RAM	n ² + 3n l + nm + m l		
Commutan Codo	Main Control Logic	PROM	393		
Computer Code	Interrupt Service Routine	PROM	74		
		RAM	n ² + 3n l + nm + m l + m + l		
TOTAL		PROM	$n^2 + nl + mn + 467$		

SYSTEM STRUCTURE FOR DEMONSTRATING INTEL 8080 MICROPROCESSOR CONTROL

CONTROL CODE BLOCK DIAGRAM

BLOCK DIAGRAM FOR MATRIX/VECTOR MULTIPLICATION

W = TIME TO EXECUTE BLOCK 3

The TO EXECUTE BLOCKS 1 8 mg = 11ME TO EXECUTE BLOCKS 4 8 6 mg = 11ME TO EXECUTE BLOCKS 8 7 A = 11ME TO EXECUTE BLOCK 10

T_{A1} = TIME TO EXECUTE BLOCK 11 T_{A2} = TIME TO EXECUTE BLOCKS 8, 12, 13 T_{A3} = TIME TO EXECUTE BLOCK 14

BLOCK DIAGRAM FOR VECTOR ADDITION, STATE STORE AND INTERRUPT SERVICE

INTEL 8080 SOFTWARE FOR LQG CONTROLLER

```
21 BOBO MACRO ASSEMBLER, VER 2.0 ERRORS . 0 PAGE 1
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
                                         KALMAN FILTER/CONTROLLER
                                         PROJECT: MICROPROCESSOR IMPLEMENTATION OF MODERN C
PROGRAMM: J. KROBEL, DIGITAL COMPUTER LAB
DATE: 17-AUG-78
UERSION: 00.00
REVISION: 00.00
FUNCTIONAL DESCRIPTION:
THIS PROGRAM CONTROLS A 2ND
ORDER SYSTEM, USING MODERN CONTROL
METHODS. THE BASIC EQUATIONS FOLLOW
                                                 K+1
                                                          - PHIDEU + HDEZ
                                                  U
                                                           - GDIV
                                                   K+1
                                         UHERE !
                                                            . SYSTER MEASUREMENT VECTOR
                                                            . KALMAN FILTER GAIN MATRIX
                                                  MD
                                                            - PAST STATE ESTIMATE VECTOR
                                                  PHID . CLOSED LOOP SYSTER MATRIX
                                                            - NEXT STATE ESTIMATE VECTOR
                                                    K+1
                                                             . CLOSED LOOP FEEDBACK GAIN MATRIX
                                                  GD
                                                            - SYSTEM INPUT VECTOR
                                                   K+1
                                         FOR THE SECOND ORDER SYSTEM!
                                         Z - 1X1 VECTOR
HD - 2X1 MATRIX
U - 2X1 VECTOR
PHID - 2X2 MATRIX
GB - 1X2 MATRIX
U - 1X1 VECTOR
                                         REVISION HISTORY
                                         SYSTEM EQUATES!
                                                                             9 OF ELEMENTS IN VECTOR
9 8 ROWS IN MATRIX
9 DATA MATRIX START ADDR 81
9 PARTIAL MATRIX MPV START ADDR
9 MATRIX MPV RESULT START ADDR
                                                 EQU
EQU
EQU
                                                            1
2
5000H
5100H
2
```

761	5000		USZ	EQU	5		8 OF ELEMENTS IN VECTOR
771	9008		MSS	EOU	5		8 ROUS IN MATRIX
781	5300		DMAS	EOU	5300H		DATA MATRIX START ADDR 82
791	5400		SAMM	EOU	5400H		PARTIAL MATRIX MPY START ADD
801	5500		MMRAZ	EOU	5500H		MATRIX MPY RESULT START ADDR
811							
128			1				A 45 51 505000 500 000000
831	2000		U\$3	EOU			8 OF ELEMENTS IN VECTOR
841	0001		MS3	EQU	1		8 ROUS IN MATRIX
851	5600		DMA3	EOU	5600H		DATA MATRIX START ADDR 83
861	5700		PMMA3	EOU	5700H		PARTIAL MATRIX MPY START ADD
	5800		MMRAJ	EOU	5800H	,	MATRIX MPY RESULT START ADDR
291							
90:							
911	5200		LOUT	EQU	5200H		
92:	5300		STRIPC		5300H		OUTPUT VAR LOCATION
931	3.500		SIMIFC	500	9300m		STRIP CHART WAR LOCATION
941							
951	3C3D		,	ORG	3C3DH		
961	3C3D	C38941		JAP	INTR		SET UP INTERRUPT SERV ROUT.
971	3030	C30041		314	4111K	,	SET OF INTERROPT SERV ROUT.
98:			1				
991	4000		,	ORG	4000H		
1001				040	100011		
1011			INIT	IALZAT	TON		
1921					.011		
103:	4000	F3	•	DI			DISABLE INTERRUPTS
1041	4001	310040		LXI	SP, 4000H		SET UP STACK POINTER
105:					. ,	•	or or other rounter
106:							
1071			i				
108:			PROG	RAM ST	ART:		
109:							
1101			, MULT	IPLY M	ATRIX HD (KAL	MAN FILTER GAIN MATRIX) WITH
1111			1				STEM MEASUREMENT VECTOR).
115:					OUS X 1 CO		
113:			1 Z	IS 1 R	OU X 1 CO	L	
1141			1				
1151	4004		STRT1				
1161	4004	3601		MUI	A,US1		ESTABLISH VECTOR SIZE
1171	4006	110051		LXI	D. PRRAL		PARTIAL MATRIX MPY START ADD
118:	4009	210050		LXI	H, DRA1	,	DATA MATRIX START ADDR
120:	400C		COLM1 :				
121:	400C	FS	COLMI	PUSH	PSU		
122:	400D	5000		RUI	8.MS1		START NEXT COLUMN MPY, SAVE
123:	400F	46		MOU	C.A		ESTABLISH MATRIX ROU SIZE GET OPERAND 81
1241	4010	23		INX	H		POINT TO OPERAND SE
1251	40.0			****	•	,	LOTHI IO OLEMBID SE
1261	4011		ROUN1:				
1271	4011	CS		PUSH			MPY THE ELEMENTS IN EACH ROU
128:	4012	ES		PUSH	H		SAVE B.C.H & L
129:	4013	66		MOU	H.R	i	
1301	4014	CD4F41		CALL	MULT		8 DIT SIGNED
131:	4017	7C		MOU	A.H	:	PREPARE TO STORE
132:	4018	12		STAX	D	:	SAUE PARTIAL MATRIX MPY
133:	4019	13		INX	D	i	
1341	4016	EI		POP	H	:	RESTORE H & L
1351	4013	53		INX	H	:	POINT TO NEXT OPERAND
136:	401C	C1		POP		;	RESTORE VECTOR COUNT (B)
137:							RESTORE OPERAND 81 (C)
138:	401D	05		DCR	•		COLUMN ALL DONE ?
1391	401E	C21140		JNZ	ROUNI		NO
1401	4021	F1		POP	PSU	i	YES, RESTORE VECT SIZE
1411	4022	3D		DCR	•	1	ALL MULTIPLIES COMPLETE ?
1421	4023	C20C40		JNZ	COLNI		NO
1431						,	YES, SUR PARTIALS TO COMPLET
1441	4026	9695		MUI	B.MS1		REESTABLISH MATRIX ROU SIZE
1451	4028	110052		LXI	D. MMRAL		
146:	4023	210051		LXI	H, PRRAL	1	PARTIAL MAT MPY START ADDR
1471	402E		1				
149:	402E	0E01	SUMA1:	-			BETWITTAL 195 185000 5105
150:	4030	AF 1		MUI	C. US1		REINITIALIZE VECTOR SIZE
	4434	***		~~~	•		CENT REG R

```
4031
4032
4034
                                  1600
1E08
                                                                                                                , OBTAIN POINTER OFFSET IN DAE
, CLEAR UPPER PORTION OF DAE
, SET OFFSET, MATRIX ROW SIZE
151:
152:
153:
154:
155:
156:
157:
158:
159:
                                                                                       D.O
E.MS1
                 4036
4036
4037
4038
4039
                                                        SUMB1:
                                                                                                                JA-A+HL
JHL-HL+DE (DE-OFFSET)
JALL TERMS SUMMED ?
                                  26
                                                                         ADD
                                                                         DAD
                                  19
                                  OD
                                                                         JNZ
                                  C23640
                                                                                        SUMD 1
                                                                                                                    NO
163:
                 403C
403D
403E
403F
                                                                                                                    YES, RESTORE RESULT ADDR
STORE RESULT
MATRIX MPY COMPLETE ?
                                  DI
                                  15
                                                                         STAX
                                                                                       D
                                                                         DCR
                                  CA5240
                                                                                        DONE
                                                                                                                    YES
                                                                                                                   MO, POINT TO MEXT RESULT ADD ADJUST TERM POINTER TO LAST GET BASE ADDR GET MATRIX ROW SIZE
 1641
                  4042
                                  13
                                                                         INX
165:
166:
167:
168:
169:
170:
171:
172:
                 4043
4044
4047
4049
                                                                          PUSH
                                                                                       H, PRMA1
A, MS1
B
                                 210051
3E02
90
5F
                                                                         RUI
SUB
                                                                        MOU
MUI
DAD
POP
JRP
                                                                                                                , GET OFFSET
                                                                                       E.A
                  4046
                 404B
404D
404E
404F
                                                                                                                ; CLEAR UPPER PORTION OF DE ; HL - PRMA + US - REG B
                                  1600
                                  D1
C32E40
 1731
                                                                                        SURAL
175:
176:
177:
178:
179:
180:
                                                        DONE 1 :
                  4052
                                                            MULTIPLY MATRIX PHID (CLOSED LOOP SYSTEM MATRIX) UI UECTOR U (PAST STATE VECTOR). PHID IS 2 ROUS X 2 COLS U IS 2 ROUS X 1 COL
 1821
183:
184:
185:
186:
                                                                                                               ; ESTABLISH VECTOR SIZE
; PARTIAL MATRIX MPY START ADD
; DATA MATRIX START ADDR
                                                                                       A, USZ
D, PRMAZ
BARD, H
                  4052
                                  3605
                                                                         MUI
                 4054
                                  110054
                                                                         LXI
                                                                         LXI
186:
187:
188:
189:
190:
191:
192:
193:
194:
                                                        COLMS:
                  405A
                                                                                       PSU
B, MSZ
C, M
                                                                                                               ; START NEXT COLUMN MPY, SAUE
; ESTABLISH MATRIX ROU SIZE
; GET OPERAND 81
; POINT TO OPERAND 82
                  405A
405B
405D
                                  F5
9602
4E
                                                                         PUSH
                                                                         MUI
                                                        ROUME:
                  405F
                  405F
                                                                                                                , MPY THE ELEMENTS IN EACH ROW
                                  C5
                                                                         PUSH
                                                                                                                   MPY THE ELEMENTS IN EACH
SAVE B,C,H & L
GET OPERAND 82
8 BIT SIGNED
PREPARE TO STORE
SAVE PARTIAL MATRIX MPY
ADJUST SAVE POINTER
RESTORE H & L
1951
1961
1971
1981
                 4060
4061
4062
4065
4066
4067
4068
4069
                                  ES
                                                                         PUSH
                                                                                       H, H
HULT
A, H
D
                                  66
CD4F41
                                                                         MOU
                                                                         CALL
                                                                         HOU
                                  70
                                  12
200: 201: 202: 203: 204:
                                                                         INX
POP
INX
POP
                                  13
                                                                                                                    POINT TO MEXT OPERAND
RESTORE VECTOR COUNT (B)
RESTORE OPERAND 81 (C)
COLUMN ALL DONE ?
                                  23
                                                                                       H
                                  CI
205 |
206 |
207 |
208 |
209 |
                  4061
                                  05
                                                                         DCR
                 406C
406F
4070
4071
                                  C25F 40
                                                                         JNZ
                                                                                       ROUNZ
                                  F1
                                                                                       PSU
                                                                                                                    YES, RESTORE VECT SIZE ALL MULTIPLIES COMPLETE ?
                                                                         DCR
                                  CESA40
                                                                                       COLMS
                                                                         JMZ
                                                                                                                   YES, SUM PARTIALS TO COMPLET
REESTABLISH MATRIX ROW SIZE
MATRIX MPY RESULT START ADDR
PARTIAL MAT MPY START ADDR
 210:
                                  0602
110055
210054
211:
                  4074
                                                                                        S.MS2
212:
213:
214:
215:
                 4076
                                                                                       D. MARAZ
                                                                         LXI
                                                                         LXI
                 407C
407C
407E
407F
                                                        SURAZ:
                                 0E02
AF
D5
1600
1E02
                                                                                                               ; REINITIALIZE VECTOR SIZE
; CLEAR REG A
; OBTAIN POINTER OFFSET IN DAE
; CLEAR UPPER PORTION OF DAE
; SET OFFSET, MATRIX ROW SIZE
216:
                                                                        MUI
XRA
PUSH
                                                                                       C. USE
218:
1612
                  4080
                                                                         MUI
                                                                                       E.ASZ
551:
                 4084
4084
4085
4086
                                                        SUMBE
                                  19
0D
                                                                         DAD
DCR
                                                                                                                    A · A · HL
HL · HL · DE (DE · OFFSET)
ALL TERMS SUMMED ?
 1655
2241
```

```
JNZ
POP
STAX
4087
4088
4088
4080
4090
4091
4092
4095
4099
4098
4090
4090
                                                                    C28440
                                                                                                                                                                                                                                     NO
VES, RESTORE RESULT ADDR
STORE RESULT
NATRIX NPV COMPLETE ?
                                                                    D1
                                                                    CAA040
13
06
                                                                                                                                                JZ
IMX
PUSH
LXI
MVI
SUB
MOU
MVI
DAD
POP
JRP
                                                                                                                                                                              PONES
                                                                                                                                                                                                                                     VED
HO, POINT TO MEXT RESULT ADD
ADJUST TERM POINTER TO LAST
GET BASE ADDR
GET MATRIX ROW SIZE
                                                                   210054
3E02
90
5F
                                                                                                                                                                            A, RSE
D
                                                                                                                                                                                                                                     GET OFFSET
CLEAR UPPER PORTION OF DE
ML - PMMA + US - REG B
                                                                    1600
                                                                    C37C40
                                                                                                                                                                              SURAZ
                                                                                                                         DO VECTOR ADDS TO COMPUTE W(K+1) I.E.
                                                                                                                            U(K+1)1 - PHIDSU(K)1 + HDSZ(K)1
249:
249:
2551:
2551:
2551:
2551:
2559:
2569:
2664:
2664:
2667:
2777:
2777:
2811:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
2887:
28
                                                                                                                            UCK+1 IN . PHIDSUCK IN . HDSZCK IN
                                                                                                                                                                                                                            ; GET U(K+1) STORAGE AREA ADDR
                                                                   210056
                                                                                                                                                LXI
                                                                                                                                                                            H, DMA3
                                                                  0005
0005
110022
510025
                                                                                                                                               PUSH
LXI
RVI
RVI
RVI
INR
                                                                                                                                                                                                                                    TEMP SAUE
OBTAIN MDEZ RESULT START A
OBTAIN PHIDEU RESULT START A
OBTAIN 8 OF TERMS TO ADD
OBTAIN OFFSET TO STORE SUMS
                                                                                                                                                                            H, MRRA1
D, MRRA2
B, US3
                                  40AF
40B0
40B1
40B2
40B3
40B4
40B5
40B6
40B9
40BA
                                                                                                               ADDNXT:
                                                                                                                                                                                                                                     CLEAR A REG
GET GD#Z TERM
                                                                   86
E8
86
37
                                                                                                                                               ADD
XCHG
ADD
STC
CMC
RAL
JC
ORA
JP
ORI
                                                                                                                                                                            .
                                                                                                                                                                                                                                      ADD PHIDSU TERM
SET CARRY - 0
                                                                  3F
17
DAC440
B7
                                                                                                                                                                                                                                    ADJUST FOR 2.0 SCALING
NEG OR POS ?
SET CONDITION CODE
POSITIVE, ANY OVERFLOW ?
YES, FORCE TO LARGEST 8
                                                                                                                                                                             NEG
                                                                   FEBF40
                                                                                                                                                                              NOFLO
                                                                   F67F
                                   400F
                                                                                                              NOFLO:
                                   408F
                                                                                                                                               ANI
JRP
                                                                   E67F
                                                                                                                                                                                                                            , FORCE TO POSITIVE &
                                                                   C3C640
                                                                                                                                                                              SCAL1
                                                                                                               MEG:
                                                                   F680
                                                                                                                                               ORI
                                                                                                                                                                            -
                                                                                                                                                                                                                            , FORCE TO NEGATIVE &
                                                                                                              SCAL1 :
                                  ; GET STORAGE ADDRESS
; STORE SUM
; CHECK IF ALL TERMS ADDED
                                                                   E3
                                                                                                                                               XTHL
                                                                 E3
77
05
CAD640
7D
81
6F
E3
E3
13
C3AF40
                                                                                                                                               MOU
DCR
JZ
MOU
ADD
MOU
XTHL
XCHG
IMX
IMX
JMP
                                                                                                                                                                            H.A
                                                                                                                                                                            DONE 4
                                                                                                                                                                                                                            , ADJUST STORAGE ADDRESS
                                                                                                                                                                                                                            , RESTORE POINTERS
                                                                                                                                                                                                                            POINT TO NEXT GDSZ TERM
POINT TO NEXT PHIDSW TERM
ADD NEXT TERMS
                                                                                                                       UPDATE U(K) WITH NEWLY CALCULATED U(K+1)
299:
299:
                                                                                                              DONE 41
                                                                                                                                                                                                                           , RESTORE STACK
```

```
J GET 8 OF TERMS TO STORE
J TEMP SAVE
J GET U(K+1) STOREAGE AREA ADD
J GET OFFSET OF U(K+1)
301:
302:
303:
304:
305:
306:
307:
308:
309:
                         40D7
                                                SE 02
                                                                                                                            L.US3
                                                                                                                          H, DMA3
                         40D9
40DA
40DD
                                                E5
210056
                                                                                                        PUSH
LXI
RVI
                                               9C
119953
9692
                                                                                                        IMR
LXI
                         40DF
                                                                                                                                                               ; GET U(K) STORAGE AREA ADDR
                         40E0
40E3
40E5
                                                                                                                            B. MS2
                                                                                                        MUI
                        40E6
40E6
40E7
40E8
40EA
40ED
40EE
40E6
40F1
40F2
40F3
                                                                                STRNXT:
 310:
                                                                                                                                                               ; GET U(K+1); STORE INTO OLD U(K); GET 8 OF TERMS REMAINING TO; ANY LEFT ?
                                                                                                                            A.M
                                                                                                        MOU
315:
                                                 12
                                                                                                        STAX
313:
314:
315:
                                                                                                        XTHL
DCR
                                                E3
                                                 20
                                                                                                        JZ
XTHL
                                                CAF748
                                                                                                                             DONES
                                                                                                                                                                     NO
                                                E3
                                                                                                                                                                     YES, RESTORE POINTER ADJUST FOR NEXT U(K+1)
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
                                                                                                       MOU
MOU
MOU
                                                                                                                             A.L
                                                81
6F
78
                                                                                                                             C
                                                                                                                            L.A
                                                                                                                                                               , ADJUST FOR NEXT U(K)
                                                                                                        ADD
                                                80
5F
                                                                                                                            E.A
STRNXT
                                                C3E640
                                                                                     MULTIPLY MATRIX GD (CLOSED LOOP FEEDBACK MATRIX) UI UECTOR W (NEXT STATE VECTOR).

GD IS 1 ROW X 2 COLS
W IS 2 ROWS X 1 COL
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
                        40F7
40F8
40FA
40FD
                                                                                DONES:
                                                E1
3E02
110057
210056
                                                                                                       POP
                                                                                                                                                                     RESTORE STACK
                                                                                                                            EARNY, G
EARNY, G
EARNY, H
                                                                                                                                                                     ESTABLISH VECTOR SIZE
PARTIAL MATRIX MPY START ADD
DATA MATRIX START ADDR
                                                                                                        MUI
                                                                                                                                                               1
                                                                                                        LXI
                        4100
4100
4101
4103
                                                                               COLM3:
                                                F5
0601
4E
                                                                                                                                                               ; START NEXT COLUMN MPY, SAN
; ESTABLISH MATRIX ROW SIZE
; GET OPERAND 81
; POINT TO OPERAND 82
                                                                                                        PUSH
                                                                                                                            PSU
                                                                                                                                                                                                                                                    SAVE
339:

349:

341:

343:

344:

345:

346:

347:

348:

348:

348:

348:

348:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

353:

373:

373:

373:

373:

373:
                                                                                                        MUI
                                                                                                                            B.RS3
C.R
                         4104
                                                 23
                                                                                                        INX
                                                                               ROUNS:
                         4105
4106
4107
                                                 C5
                                                                                                        PUSH
                                                                                                                                                                     MPY THE ELEMENTS IN EACH ROU
                                                                                                                                                                    SAVE B.C.H & L
GET OPERAND 82
8 BIT SIGNED
PREPARE TO STORE
                                                                                                       PUSH
MOU
CALL
MOU
                                                E5
                                                                                                                            H
                                                66
CD4F41
7C
                                                                                                                            H, R
MULT
                         4108
                         4108
410C
                                                                                                                            A.H
                                                                                                                                                                    PREPARE TO STORE
SAVE PARTIAL MATRIX MPY
ADJUST SAVE POINTER
RESTORE M & L
POINT TO NEXT OPERAND
RESTORE VECTOR COUNT (B)
RESTORE OPERAND $1 (C)
COLUMN ALL DONE ?
                                                12
                                                                                                        STAX
                         410E
410E
410F
                                                                                                        INX
POP
INX
POP
                                                                                                                           228
                                                E1
                                                05
C20541
                         4111
                                                                                                        DCR
                                                                                                        JNZ
POP
DCR
                         4112
                                                                                                                            ROUNS
                                                                                                                                                                     YES, RESTORE VECT SIZE
ALL MULTIPLIES COMPLETE ?
                                                                                                                            PSU
                                                FI
                                                 C20041
                                                                                                                             COLN3
                                                                                                                                                                    YES, SUM PARTIALS TO COMPLET
REESTABLISH MATRIX ROW SIZE
MATRIX MPY RESULT START ADDR
PARTIAL MAT MPY START ADDR
                         411A
411C
411F
                                                0601
110058
210057
                                                                                                                            B.MS3
                                                                                                        MUI
                                                                                                        LXI
                                                                                                                            D. MARAS
                         4122
                                                                                SUMA3:
                        4122
4124
4125
4126
4128
                                                0602
AF
D5
1600
                                                                                                       RUI
                                                                                                                                                               , REINITIALIZE VECTOR SIZE
                                                                                                                            C.US3
                                                                                                                                                                    CLEAR REG A
OBTAIN POINTER OFFSET IN DAE
CLEAR UPPER PORTION OF DAE
SET OFFSET, MATRIX ROW SIZE
                                                                                                                            -
                                                                                                        PUSH
RVI
RVI
                        412A
412A
412B
412C
                                                                                 SURB3:
                                                 96
19
0D
                                                                                                        DAD
DCR
                                                                                                                                                                    A · A · HL
HL · HL · DE (DE · OFFSET)
ALL TERMS SUMMED ?
                                                                                                                             200
 3741
```

```
4120
4130
4131
4132
4133
4136
4137
376:
377:
378:
379:
380:
381:
383:
384:
385:
386:
387:
399:
399:
399:
399:
399:
399:
401:
401:
401:
403:
                             C22041
                                                                                                  NO
VES, RESTORE RESULT ADDR
STORE RESULT
MATRIX MPV COMPLETE ?
                                                             JNZ
POP
STAX
DCR
JZ
INX
PUSH
LXI
MUI
SUB
MOU
MUI
DAD
POP
JMP
                                                                          SUMP3
                             05
CA4641
                                                                           DONE 3
                                                                                                  VES
NO, POINT TO MEXT RESULT ADD
ADJUST TERM POINTER TO LAST
GET BASE ADDR
GET MATRIX SIZE
                             13
              4138
4138
4138
4136
4136
                            210057
3E01
90
5F
                                                                          H.PRMA3
A.RS3
                                                                                              ; GET OFFSET
; CLEAR UPPER PORTION OF DE
; HL - PRIMA + US - REG B
                             1600
              4141
                            D1
C38841
                                                                          SUMAS
              4146
4146
4147
                             37
                                                                                              ; SET CARRY - 0
; CHECK FOR INTERRUPT COMPLETI
; MEEDED FOR 1ST PASS ONLY
                             3F
               4142
                                               UNITEP
              4149
4140
                                                                                              ; WAIT FOR INTERRUPT
; INTERRUPT SERVICED
; CALCULATE MEXT OUTPUT
                             148450
                                                                          WAITLP
                             C30440
                                                    SUBROUTINE 'MULT'
                                                                                                  8 BIT SIGNED MULTIPLY
                                                     INPUTS: C - MULTIPLICAND
H - MULTIPLIER
                                                                                                                             B BIT SIGNED
                                                   OUTPUTS: HEL - PRODUCT
                                                                                                                             16 BIT SIGNED
                                                   DESTROYS: A.B.C.H.L
              414F
414F
4150
4151
4154
                                               MULT:
4131
                                                                                              ; CHECK SIGN OF MULTIPLIER (H)
                                                              MOV
                                                                          A.H
                            F26E41
                                                                                                  H IS POSITIVE
MULTIPLIER (H) IS NEGATIVE
TAKE 2'S COMPLIMENT
416:
                                                                          MULHP
                            2F
3C
67
418:
              4155
                                                                          A.A
              4157
4158
4159
4150
4150
415E
420:
421:
422:
                                                                                              I CHECK SIGN OF MULTIPLICAND
                            F26341
                                                                          MULOS
                                                                                              ; INPUTS HAVE OPPOSITE SIGNS
; MULTIPLICAND (C) IS
; TAKE 2'S COMPLIMENT
 1231
                            3C
424:
425:
426:
427:
              415F
415F
4168
                                               MULSS:
                            CD7941
                                                             CALL
                                                                         IMUL
                                                                                              , SAME SIGN, MULTIPLY AND RETU
4291
4301
4321
4331
4331
4331
4361
4361
4381
4381
4401
4411
4431
4441
4451
4461
4471
4481
              4163
4163
4166
4167
4168
4169
416A
                                               MULOS:
                                                                                              HAC HAVE OPPOSITE SIGNS
                            CD7941
                                                             CALL
                                                                         IMUL
                                                             BCX
ROU
CRA
ROU
CRA
ROU
                            28
                                                                          A.L
                            L.A
                                                                                              , 2'S COMP OF L
                                                                                              ; 2'S COMP OF H
; RETURN WITH FINAL RESULT IN
              416E
416E
416F
4170
4173
4174
                                               HULHP:
                            79
87
F25F41
8F
3C
4F
                                                                                                 H (MULTIPLIER) IS POSITIVE
CHECK SIGN OF MULTIPLICAND
                                                                         A,C
                                                                          MULSS
                                                                                                  MULTIPLICAND (C) IS NEGATIVE TAKE 2'S COMPLIMENT
                                                                                              , DO OPPOSITE SIGN MULTIPLY
```

```
4521
                                                   SUBROUTINE 'INUL' --- 8 BIT UNSIGNED FRACTIONAL
4541
4551
4561
4571
4581
4581
4661
4661
4661
4651
4661
4671
4681
4671
4681
4701
                                                INPUTS: C - MULTIPLICAND
                                                                                                                               8 BIT UNSIGNED
                                                OUTPUTS: HL - PRODUCT
                                                                                                                               16 BIT UNSIGNED
                                                , DESTROYS! A.B.H.L
              4179
4179
4178
4170
                                                INUL:
                                                                                                ; CLEAR FOR FOLLOWING 'DAD' IN
; CLEAR BOTTON HALF OF HL
; INITIALIZE LOOP COUNTER
                             3E 08
                                                              HOU
              417E
417E
417F
4182
                                                                                               ; SHIFT RESULT
; IF RSB SET, ADD MULTIPLICAND
; ML - ML + BC
                             D28341
                                                              JNC
                                                                           IMULS
                                                IMUL2:
4721
4731
4741
4751
4761
4771
4781
              4183
4184
4187
                                                                                                , DECREMENT & TEST LOOP COUNTE
                             C27E41
                                                              JNZ
DAD
RET
                                                                           IMULI
                                                                                                , ADJUST FOR FRACTIONAL MPY
                                                   INTERRUPT SERVICE ROUTINE
480:
481:
482:
483:
484:
                                                   FUNCTIONAL DESCRIPTION:
                                                     THIS ROUTINE IS ENTERED WHEN THE CLOCK (DELTA T) GOES OFF. DELTA T IS A SQUARE WAVE CLOCK INPUT FROM A FUNCTION GENERATOR. HENCE IT IS PRESETTABL
4861
                                                            A) A DELTA T TIME STEP
B) A MEANS OF INDICATING END OF CONVERSION FOR
488:
4891
490 :
491 :
492 :
                                                      AZD MAX CONVERSION TIME IS .05 MS. HENCE DELTA T
BE SET HIGHER
                                                      THE ROUTINE READS IN A 12 BIT AZD INPUT Z(K), WHICH TRUNCATES THE LEAST SIGNIFICANT 4 BITS SINCE ONLY B BITS ARE NEEDED.
4931
4941
4951
4961
                                                     THE ROUTINE ALSO OUTPUTS U(K) TO THE ANALOG SYSTEM REANS OF A DEA. THE DEA IS 8 BIT REPORT MAP 10. 2 OUTPUTS ARE PROVIDED: 1 TO THE SYSTEM 1 TO A STRIP CHART RECORE
498:
4991
5001
5011
5021
5031
5041
                                                     IN ADDITION, A CHECK IS DONE TO SEE IF THE INTERRUPT OCCURRED DURING CONTROL CODE CALCULATIONS, UNION COULD RESULT IN INACCURATE CONTROL COMMANDS. IF THIS ERROR OCCURS, THEN PGM CONTROL IS PASSED TO THE MONITOR.
505:
506:
507:
508:
509:
510:
511:
512:
513:
                                                INTR:
              4189
418A
418B
                                                                                                , DISABLE INTERRUPTS
                                                              PUSH PSU
                                                                                                SAUE AL
                                                I CHECK IF CONTROL CODE COMPLETED
514;
515;
516;
517;
518;
519;
520;
521;
522;
523;
524;
525;
                                                                                               ; CHECK IF CONTROL CODE COMPLE
; FIND RET ADDR FROM INTERRUPT
               418C
                             33
              418E
418E
418F
                                                                          SP
                                                               INX
                                                              INX
              4190
4193
4194
4195
4196
4199
                             214941
70
                                                                          H. WAITLP
                                                              LXI
                                                                                                , GET WAIT LOOP HI ADDR
                                                                                                  GET INTERR RET HI ADDR
ARE THEY EQUAL ?
NO, INDICATE ERR, STOP PGR
GET INTERR RET LO ADDR
                                                               XTHL
                                                              SUB
                             94
C2D241
70
                                                                           ERRI
```

```
419A
419B
419C
419F
41A0
41A1
                                                                                                                                                                                                                             ; GET WAIT LOOP LO ADDR
; ARE THEY EQUAL ?
; NO, INDICATE ERR, STOP PGH
; YES, CONTROL CODE WAS COMPLE
; RESTORE STACK PHTR TO HORMAL
526:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15529:15
                                                                                                                                                  XTHL
                                                                   96
C2D241
38
                                                                                                                                                  SUB
                                                                                                                                                                              ERR1
                                                                                                                                                 DCX
DCX
DCX
                                                                                                                                                                              SPSPSP
                                                                    30
                                                                                                                        READ A/D
                                                                  3E88
D3E7
DBES
OF
OF
OF
EGOF
                                                                                                                                                                             A, 82H
0E7H
0E5H
                                  41A3
41A5
41A7
41A9
41AA
41AC
41AC
41AF
41B8
41B3
                                                                                                                                                , SET A/D READ CHANNEL
                                                                                                                                                                                                                              AMPLIFIER INPUT
READ LOW BYTE
ADJUST FOR 4 BIT THROWAWAY
                                                                                                                                                                                                                              PRESERVE LOW MIBBLE TERP SAVE
                                                                                                                                                                              OFH
                                                                    GF
DDE 4
                                                                  of
of
of
egro
                                  4194
4195
4196
4198
                                                                                                                                                                                                                              PRESERVE HIGH NIBBLE REGE TO FORM 8 BIT INPUT STORE INPUT IN MATRIX DATA A
                                                                    210050
                                                                                                                                                                              H. DRAS
                                                                                                                        OUTPUT D/A (U)
MENORY MAPPED 1/0
                                  418D
41C0
41C1
41C4
                                                                                                                                                 HOU
LXI
HOU
                                                                    210052
                                                                                                                                                                              H, UOUT
                                                                                                                                                                                                                              , OUTPUT U
                                                                                                                                                                             A. R
H, 0F700H
                                                                   7E
2100F7
                                                                                                                                                                             H, A
H, STRIPC
                                                                     210053
                                                                                                                                                LXI
MOV
LXI
MOV
POP
POP
STC
EI
                                                                                                                                                                                                                              , OUTPUT REMORY LOC TO STRIP C
                                  41C8
41C9
41CC
                                                                                                                                                                             A, H
H, 0F701H
H, A
                                                                   2101F7
77
                                   41CD
                                                                    EI
                                  41CE
41CF
41D0
41D1
                                                                   F1
37
FB
C9
                                                                                                                                                                                                                              , INDICATE INTERRUPT COMPLETE
                                                                                                                                                 RET
                                                                                                                                                                                                                              , EMABLE INTERRUPTS & RETURN
573:
574:
575:
576:
576:
577:
578:
579:
580:
581:
582:
                                                                                                                            CONTROL CODE NOT COMPLETED, ERROR
                                  4102
                                                                                                               ÉRR1:
                                                                                                                                                RST
                                                                                                                                                                                                                              , BRANCH TO MONITOR IMMEDIATLY
                                                                                                                        DATA MATRIX STORAGE AREA
                                                                                                                       THE FOLLOWING DATA IS FOR THE 2ND ORDER SYSTEM ALL 8'S ARE REPRESENTED AS FRACTIONS WHERE: +8 - FRAC.2128+0.5 -8 - 2'S COMP OF (-FRAC.2128+0.5)
583:
584:
585:
586:
587:
588:
589:
590:
591:
592:
593:
                                                                                                                                                                   NOTE: GAINS BELOW ARE FOR T . 0.1 SEC
                                                                                                                                      - INPUT VECTOR FROM ARD
594:
595:
596:
597:
598:
599:
                                                                                                                        HD - MATRIX
                                                                                                                                     -.113
                                                                                                                                                                       . .057 UNEN SCALED ON 2.0
                                                                                                                                               086
                                                                                                                                                                           -
```

```
601:
602:
603:
604:
606:
606:
607:
610:
612:
613:
614:
615:
616:
617:
                                                                               HOTE: HD(1) & HD(2) HAVE BEEN COMPLIMENTED DUE TO INVERTED INPUT.
                                                                                                                                                    ; Z(K) VECTOR A/D INPUT 81
; HD MATRIX ROW1 COL1
; HD MATRIX ROW2 COL1
                       5000
                                            00
33
16
                                                                                                                    OH OF 9H
                                                                                                                     OIM
                                                                                U(K) - PAST STATE VECTOR
PHID - CLOSED LOOP SYSTEM MATRIX
                                                                                                                                                           . .43632
- - .13862
                                                                                                                                    .07127
                                                                                PHID . .87864
                                                                                                                                                                                              .03563
                                                                                                       -. 26524
                                                                                                                                    .63205
                                                                                                                                                                              WHEN SCALED ON 2.0
                      5300
5300
5301
5302
5303
5304
6306
                                                                                                                   5300H
40H
38H
0F0H
40H
5H
28H
                                                                                                ORG
DB
DB
DB
DB
DB
                                                                                                                                                   ; U(K) PAST STATE 81 INIT .5
; PHID MATRIX ROW1 COL1
; PHID MATRIX ROW2 COL1
; U(K) PAST STATE 82 INIT .5
; PHID MATRIX ROW1 COL2
; PHID MATRIX ROW2 COL2
                                            40
38
F0
40
05
28
 618:
619:
620:
621:
622:
623:
624:
625:
626:
627:
                                                                               U(K+1) - PRESENT STATE VECTOR
GB - CONTROL GAIN MATRIX
                                                                                GD - -1.742 -.41412 - -.871
                                                                                                                                                                                       -.20706
629:
630:
631:
632:
633:
634:
635:
636:
637:
                                                                                                                                                                     WHEN SCALED ON 2.0
                       5600
5601
5602
5603
                                                                                                 ORG
                                                                                                                    5600H
                                                                                                                    9E 6H
9H
9H
                                                                                                                                                   ; U(K+1) PRESENT STATE 81
; GD MATRIX ROW1 COL1
; U(K+1) PRESENT STATE 82
; GD MATRIX ROW1 COL2
                                                                                                 DB
DB
                                                                                                 END
 639: NO PROGRAM ERRORS
641:
642:
643:
644:
646:
646:
648:
648:
654:
654:
654:
655:
656:
656:
658:
658:
658:
                                                                                          SYRBOL TABLE
                   . .1
                                                                                                40AF
405A
5300
4146
41D2
                                         9007
4000
5000
4000
417E
9006
4163
408F
9006
4004
4036
                                                                          ADDNX
COLM2
DMA2
DONE3
ERR1
IMUL2
MMRA1
MS2
MULSS
PMA1
ROUM1
SP
SUMA1
                                                                                                                                 COLH3
DMA3
DONE 4
                   COLMI
                                                                                                                                                                                        DONE 1
DONE 5
IMUL
                                                                                                                                H
INTR
MMRAZ
MS3
MULT
PMMAZ
SOUNZ
STRIP
SUMAZ
SUMB3
VS3
                   IMULI
                                                                                                                                                                                       RULHP
                                                                                                 4183
                                                                                                4157
5200
0002
4157
5100
4011
0006
4026
4026
                                                                                                                                                       5500
0001
414F
5400
405F
5300
407C
412A
                  MS1
MULOS
NOFLO
PSU
SCALI
STRTI
SUMBI
VS1
                                                                                                                                                                                       NEG
PRINA3
ROUN3
STRNX
SURA3
UOUT
WAITL
                                                                                                                                                                                                              4004
5700
4105
40E6
4122
5800
4149
```

SECOND-ORDER OUTPUT RESPONSE AS A FUNCTION OF WORD LENGTH

RESPONSE TO INITIAL CONDITION: $x_0 = (0.5, 0.5)$ STANDARD STRUCTURE WITHIN CONTROLLER $\Delta t = 0.1$ SEC, WORD LENGTH = 8 BITS

